Spectroscopic Characteristics of Highly Selective Manganese Catalysis in Acqueous Polyurethane Systems
نویسندگان
چکیده
The latest investigations on producing more efficient catalytic aqueous polyurethane systems are in the domain of metal complexes with mixed ligands. In our previous research works, the high selectivity for the isocyanate-hydroxyl reaction in aqueous polyurethane systems has been shown by the manganese(III) mixed-ligand complexes. The two new complexes have been prepared with two acetylacetonate (acac) ligands and one maleate ligand and its hydroxylamine derivative of the general formula [Mn(C5H7O2)2L]. Their structures have been established by using the fundamental analyses, the FTIR and UV/VIS spectroscopic methods, as well as the magnetic measurements. In order to explain the different selectivity of the manganese(III) mixed-ligand complexes, the UV and ESR spectroscopy have been employed to determine the kinetics of the complexes’ decomposition. The thermal stability of the complexes has been determined by way of the dynamic TG method at the heating rate of 5°C⋅min and at the temperature ranged 20550°C. It suggests the decomposition of the Sensors 2006, 6 1709 complexes by loss of acid ligand. The main factor in the selective catalysis control in the aqueous polyurethane systems is the nature of the acid ligands and their impact on the manganese(II)/manganese(III) equilibrium.
منابع مشابه
Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method
The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CATXC-6212) and the highly selective manganese catalyst, the complex Mn(III)diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticu...
متن کاملEffects of the Acrylic Polyol Structure and the Selectivity of the Employed Catalyst on the Performance of Two-Component Aqueous Polyurethane Coatings
Two kinds of aqueous acrylic polyols (single step and multi step synthesis type) have been investigated for their performance in the two-component aqueous polyurethane application, by using more selective catalysts. The aliphatic polyfunctional isocyanates based on hexamethylen diisocyanates have been employed as suitable hardeners. The complex of zirconium, commercially known as K-KATXC-6212, ...
متن کاملPeroxynitric Acid: A Convenient Oxygen Source for Oxidation of Organic Compounds Catalyzed by Polyimide-Supported Manganese (III) Tetrakis(4-methoxylphenyl)porphyrin Acetate
In this work, a polyimide (PI) containing triazole units was synthesized using 3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer was used as the support of manganese (III) tetrakis(4-methoxylphenyl)porphyrin acetate to attain a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn(T4-OMePP)OAc@PI were characterized by di...
متن کاملRegenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives h...
متن کاملImprovement of gas separation properties of polyurethane membrane using plasma grafting
In recent years, plasma treatments have given good results since they offer high technological efficiency with low waste generation. One of the most important characteristics of plasma methods is their action only on a thin surface layer, whereas the bulk of sample remains unchanged and the modified material keeps its chemical and mechanical properties. In this research, polyurethane membrane s...
متن کامل